
Preparation and Crystal Structure of Dichloro(chloromercury)(nitrosyl)bis(triphenylphosphine)osmium(II)

By G. A. BENTLEY, K. R. LAING, W. R. ROPER, and J. M. WATERS*

(Department of Chemistry, University of Auckland, Auckland, New Zealand)

Summary The osmium-mercury compound, OsCl₂ (HgCl)- $(NO)(PPh_3)_2$ is formed by oxidative addition of HgCl₂ to OsCl(CO)(NO)(PPh₃)₂; its crystal structure reveals octahedral co-ordination about osmium with an Os-Hg distance of 2.577 Å and a linear Os-N-O linkage.

THE addition of mercuric chloride to d^8 complexes of the platinum metals frequently results in the formation of compounds containing covalent metal-mercury bonds, e.g., (PPh₃)₂(CO)Cl₂Ir-HgCl¹ and [(PPh₃)₂(CO)₃ClOs-HgCl]-HgCl₃.² Definitive structural information on these compounds is lacking. $(\pi - C_5 H_5) Co(CO)$, also forms a 1 : 1 adduct with mercuric chloride but here structural analysis shows the compound must be formulated as a Lewis acid-base adduct.3

 $\angle \text{OsHgCl}(3)$ 177(1)°; $\angle \text{OsNO}$ 178(2)°. FIGURE.

- ¹ R. S. Nyholm and K. Vrieze, J. Chem. Soc., 1965, 5337.

- ² J. P. Collman and W. R. Roper, Chem. Comm., 1966, 244.
 ³ I. N. Nowell and D. R. Russell, Chem. Comm., 1967, 817.
 ⁴ K. R. Laing and W. R. Roper, Chem. Comm., 1968, 1568.
 ⁵ R. W. Baker and P. Pauling, Chem. Comm., 1970, 573.
 ⁶ G. M. Sheldrick and R. N. F. Simpson, J. Chem. Soc. (A), 1968, 1005.
 ⁷ F. D. Correr and L. F. Dabl. Lawar, Chem. 1962, 1, 521.
- ⁷ E. R. Corey and L. F. Dahl, Inorg. Chem., 1962, 1, 521.
 ⁸ D. J. Hodgson and J. A. Ibers, Inorg. Chem., 1968, 7, 2345.

The zerovalent osmium nitrosyl complex, OsCl(CO)(NO)- $(PPh_3)_2$,⁴ reacts readily with mercuric chloride, with loss of CO, to yield yellow crystals, m.p. 267-269°, analysing for $OsCl_2(HgCl)(NO)(PPh_3)_2$, $(v_{NO} = 1820 \text{ cm}^{-1})$. The far-i.r. spectrum shows strong bands at 317 and 297 cm⁻¹ (v_{OB-CI}) and 268 cm^{-1} $(\nu_{\text{Hg-Cl}})$ and a band of medium intensity at 173 cm⁻¹ which is probably to be associated with Os-Hg stretching. The compound is light-sensitive and, in strong light, mercury is deposited and $OsCl_3(NO)(PPh_3)_2$ (v_{NO} 1850 cm⁻¹) formed. The same reaction occurs under X-rays and this decomposition has made collection of accurate data difficult.

The yellow crystals have trigonal diffraction symmetry with $a = 44.26 \pm 0.02$, $c = 11.983 \pm 0.006$ Å, space group R 3, z = 18. The structure was solved by Patterson and Fourier methods from X-ray data recorded by a Hilger-Watts four-circle automatic diffractometer with $Mo-K_{\alpha}$ radiation. At the current stage of least-squares refinement R = 0.114 for 1388 independent reflexions.

Octahedral co-ordination is found about the osmium atom (see Figure), metal-phosphorus and metal-chlorine distances having the expected values. The osmium-mercury distance seems short by comparison with the bond lengths found between mercury and first-row transition metals in the complexes Fe(CO)₄(HgCl,py)₂ (2.552 Å)⁵ and Hg[Co- $(CO)_{4}]_{2}$ (2.50 Å),⁶ and also the osmium-osmium bond distance of 2.88 Å found in Os₃(CO)₁₂.7 Also of interest is the linearity of the co-ordinated nitrosyl group. The osmium-nitrogen and nitrogen-oxygen bond lengths of 1.79 and 1.03 Å, respectively, although inaccurate, are nevertheless in line with previously reported values.8

(Received, June 15th, 1970; Com. 918.)